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Context: Modern code reviews are supported by tools to enhance developers’ interactions allowing contributors 

to submit their opinions for each committed change in form of comments. Although the comments are aimed at 

discussing potential technical issues, the text might enclose harmful sentiments that could erode the benefits of 

suggested changes. 

Objective: In this paper, we study empirically the impact of sentiment embodied within developers’ comments 

on the time and outcome of the code review process. 

Method: Based on historical data of four long-lived Open Source Software (OSS) projects from a code review 

system we investigate whether perceived sentiments have any impact on the interval time of code changes ac- 

ceptance. 

Results: We found that (1) contributors frequently express positive and negative sentiments during code review 

activities; (2) the expressed sentiments differ among the contributors depending on their position within the social 

network of the reviewers ( e.g., core vs peripheral contributors); (3) the sentiments expressed by contributors 

tend to be neutral as they progress from the status of newcomer in an OSS project to the status of core team 

contributors; (4) the reviews with negative comments on average took more time to complete than the reviews 

with positive/neutral comments, and (5) the reviews with controversial comments took significantly longer time 

in one project. 

Conclusion: Through this work, we provide evidences that text-based sentiments have an impact on the duration 

of the code review process as well as the acceptance or rejection of the suggested changes. 
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. Introduction 

Peer code review is the practice where a developer submits a piece of

ode ( i.e., code changes) to peers to judge its eligibility to be integrated

nto the main project code-base [1] . It aims to assess the quality of source

ode changes made by contributors before they are integrated into the

ainstream. Beyond technical information, the textual comments of re-

iews could contain either positive or negative sentiments, which might

lter the perception of their benefits. Past studies have shown that mail-

ng lists of virtual communities include not only useful information such

s ideas for improvements, but also contributor opinions, and feelings

bout the introduced changes [2] . There are also evidences that devel-

pers’ opinions play a key role in the decision-making process of source

ode reviews [3–5] . However, little is known about the impact of the

xpressed sentiments on the effectiveness of the review process. 

Previously, Baysal et al. [6] have explored the impact of technical

nd non-technical factors on the duration of source code reviews. They

bserved that non-technical factors, such as reviewer experience can

ignificantly impact code review outcomes. An empirical understand-

ng of the impact of sentiments in code review process can add a novel
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imension to the findings of Baysal et al. [6] – notably to guide the de-

ign of better code review approaches and tools to facilitate improved

roductivity. 

With a view to understand the prevalence and impact of sentiments

n modern code reviews, we empirically studied the code reviews of

our long-lived software projects. In particular, we answer four research

uestions: 

RQ1 : What is the performance of sentiment detectors when ap-

plied on code reviews? 

Recent studies [7–9] have raised uncertainties related to the un-

successful application of sentiment analysis tools for software

engineering. Indeed, existing tools might require customization

to satisfy needs of a specific usage context such as technical soft-

ware engineering. Following Novielli et al. [10] , we carried out

a benchmark-based study of three sentiment detection tools that

are widely used in software engineering research ( Senti4SD [11] ,

SentiCR [12] , and Sentistrength_SE [13] ). We found that Senti4SD

tool provides the best performance (F1 79) when applied to our
 2019 

https://doi.org/10.1016/j.infsof.2019.06.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2019.06.005&domain=pdf
mailto:ikram.asri@um5s.net.ma
https://doi.org/10.1016/j.infsof.2019.06.005


I.E. Asri, N. Kerzazi and G. Uddin et al. Information and Software Technology 114 (2019) 37–54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

P

 

t  

i  

s  

i  

v  

d

2

 

y

2

 

i  

e  

c  

A  

N  

u  

f  

p  

a  

r  

d  

t  

s  

f  

u  

a  

p  

s

 

l  

w

2

 

q  

c  

t  

o  

i  

b  

C

 

fl  

a  

a  

o  

c  

a  

c  

f  

n  

t  

O  

t  

h  

p

2

 

c  

i  

c  

T  

r  

o

 

h  

s  

v  

m  

r  

s  

t  

c  

1 https://www.gerritcodereview.com/ . 
code review samples datasets. We used Senti4SD [11] in our sub-

sequent analysis. 

RQ2 : How prevalent are sentiments in code reviews? 

We found that contributors express sentiments in their review

comments ( 13.94% of comments were positive, 2.24% nega-

tive , and 83.81% were identified as neutral ). We observed that

both core and peripheral contributors do express sentiments in

the code reviews. Core members are those developers that con-

tribute intensively and consistently to the OSS project, and thus,

lead the community, while peripheral ones are occasional con-

tributors with less frequent commits. We built Social Network

Graphs of reviewers to segregate Core and Peripheral contribu-

tors. Our analysis reveals that the sentiments of Core contributors

tend to become more neutral over time. 

RQ3 : How do the presence of sentiments in code reviews correlate

with the outcome of the reviews? 

We examined the effect of sentiments on the outcome of code

reviews. We observed that reviews with negative comments on

average take longer time to complete. In contrast, the reviews

with positive sentiments had a lower duration. Reviews that con-

tain positive sentiments required, on average, 1.32 day less time

to be closed than those with negative sentiments. Moreover, we

found that 91.81% of successful reviews were identified with

positive sentiments, and 64.44% of aborted reviews contained

negative sentiments. 

ontributions 

This paper makes the following contributions: 

1. We provide empirical evidence on the effect of expressed sentiments

on the outcome of code reviews. Providing stakeholders with a bet-

ter understanding of the impact of contributors’ sentiments on team

dynamics and their productivity; 

2. We investigate whether the core ( i.e., experienced) developers and

the peripheral ( i.e., newcomers) developers express different types

of sentiments and the effect of these sentiments on the efficiency of

code reviews; 

3. We monitor the evolvement of sentiments of the top 5% contributors

across time, for four OSS projects, as they progress and gain more ex-

perience, aiming at understanding the correlation between notoriety

( i.e., experience) and the trend of sentiments expressed in text-based

interactions. 

aper organization 

Section 2 provides background information on sentiment analysis,

he code review process, and the social network analyses conducted

n this paper. Section 3 discusses the related literature. Section 4 de-

cribes the methodology of our case study. Section 5 reports our find-

ngs. Section 6 discusses our results. Section 7 highlights threats to the

alidity of our study and Section 8 concludes the paper and outlines

irections for future work. 

. Background 

This section provides background information about sentiment anal-

sis, code review, and social network analysis. 

.1. What does sentiment analysis stand for? 

Emotion and sentiment are terms relating to human subjectiv-

ty [14] understood in the same way and used interchangeably in differ-

nt domains even if they are not synonymous. Sentiment detection fo-

uses on the detection of subjectivity in a given input ( e.g., a sentence).
38 
 subjectivity can be of three types: (1) Positive, (2) Negative, and (3)

eutral. Emotion detection focuses on a finer-grained detection of the

nderlying expressions carried over by the sentiments, such as, anger,

rustration. Gerrod Parrott identified six prominent emotions in social

sychology [15] : (1) Joy, (2) Love, (3) Surprise, (4) Anger, (5) Sadness,

nd (6) Fear. This paper focuses on the analysis of sentiments in code

eviews, because sentiment detection is predominantly used in other

omains ( e.g., cars, movies) to mine and summarize opinions about en-

ities [16] . Although, analyzing sentiments and emotions in text data

imilarly related to one another, actually the granularity is quite dif-

erent. For example, “this new feature wasn’t what I expected ” and “I hate

sing this API with buggy source code ” are both negative sentiments. While

 Sentiment Analysis seeks to catch the general feel or impression peo-

le get from consuming a piece of content, Emotion Analysis stresses the

pecific articulate emotions such as happy, angry, sad, etc. 

Sentiment analysis can be performed typically at one of the three

evels: document level, sentence level, feature level [17] . In this study,

e perform a document level analysis. 

.2. Modern code review practice 

Code change review is a well-established practice to improve code

uality in software engineering. Developers read and assess each other’s

ode change before it is integrated into the mainstream line of code

owards a release. Gerrit 1 is one of the tools providing infrastructure for

nline reviews as a substitute to face-to-face meetings or mailing lists. It

s an online tool that supports the traceability of the code review process

y explicitly linking changes to a software system recorded in a Version

ontrol System (VCS) to their respective code review discussions. 

Fig. 1 illustrates the overall process underpinning the code review

ow into Gerrit tool. There are three roles into Gerrit: Author, Reviewer,

nd Verifier as shown in Fig. 1 . Authors commit code changes into VCS

nd request a review. Reviewers are responsible for passing through-

ut the changes and then proposing and discussing adjustments within

omments. In other words, reviewers might spot potential defects that

uthors are not consciously aware of. Then, the author addresses the

omments and produces a new code revision. Verifiers are responsible

or executing tests to ensure that proposed changes are bug-free and do

ot cause any regression of the system. They can also leave comments

o describe verification issues that they might encounter during testing.

nce the criteria for a review are satisfied, changes are integrated into

he mainstream repository and flagged as “Merged ”. This lifecycle may

ave another different transition “Abandoned ” when the review has not

assed the evaluation and is no longer active. 

.3. Code review factors 

One of the main concern of developers when submitting patches for

ode review is maximizing the chances of their patches being examined

n the shortest possible time. However, the outcome and duration of the

ode review process can be affected by a variety of technical factors.

hese influencing factors might introduce some bias when analyzing the

eal effect of contributor’s sentiments on review fixing time and review

utcome. 

The most intuitive factor is patch size (Churn); previous studies

ave found that smaller patches are more likely to receive faster re-

ponses [18,19] since larger patches would be more difficult to re-

iew, and hence require more time. Another important factor is how

any times a developer had to resubmit his patch for an additional

eview (Count Patches); a patch requiring multiple revisions and re-

ubmission(s) before being accepted consumes more time. Moreover,

he more wide-spread a change is across files (Edited Files), the more

oncepts it touches in a system which often results in more rework [20] .

https://www.gerritcodereview.com/
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Fig. 1. Code review flow. 
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ased on a survey of 88 open source core developers, Kononenko

t al. [21] confirmed the important influence of these technical factors

n reviews process and outcome. Authors report that the length of the

iscussion (count comments) and the amount of people involved in the

iscussion (Distinct involved Contributors) were judged as influencing

actors by the interviewed contributors. 

For our study, we select these widely used technical metrics to char-

cterize reviewed patches. Then, we use the propensity score match-

ng (PSM) technique (see Section 4.3 ) to ensure that our analysis is

ot biased by different technical characteristics. PSM [22] is a statis-

ical matching technique that allows us to create groups of reviews that

hare similar characteristics. The technical characteristics considered in

ur study are: 

• Count comments : The number of comments posted on each code

review request ( i.e., about the proposed code change). 

• Count patches : The number of patches submitted before the pro-

posed code change is accepted or rejected. 

• Edited files (discrete count) : The number of files modified by the

proposed code change. 

• Distinct involved contributors : The number of developers that par-

ticipated in the review of the proposed code change. 

• Code churn (Cumulative count) : The number of added and deleted

lines that are performed in the reviewed code changes. 

.4. Social network analysis 

Social Network Analysis (SNA) is the process of investigating so-

ial structures through the use of networks and graph theory [23] . A

etwork is typically modeled using a graph structure consisting of ver-

ices and edges. Vertices represent individuals or organizations. An edge

onnecting two vertices represents some type of relationships between

he two individuals or organizations. Social network analysis focuses on

tudying social network graphs to understand the patterns of interac-

ions and the relative positions of individuals in a social setting [24] .

NA provides various global or node-specific computed metrics for a

etwork, that are useful for making general statements about specific
39 
odes or classes of nodes. Examples of such metrics are betweenness,

iameter, distance, density, betweenness centrality, degree centrality,

r eigenvector centrality [23] . 

SNA is being widely used by researchers to model the social structure

f OSS communities and barely used in analyzing Open Source Software

eer Review [25] . Previous studies using SNA in OSS generally indicated

 few central persons being responsible for most of the interactions in

he network (Core) and a less connected large group of contributors

Peripheral) [26] . Through sentiment analysis, we aim to get insights

bout contributor’s positivity/negativity in relation to their position in

ode review interactions networks. 

. Related works 

Several works have focused the attention of the research commu-

ity on sentiments analysis. These works span many fields ranging from

appiness at workplaces [27] to emotions in social networks’ messages

uch as Yahoo and Twitter [4,28] and online Q&A such as Stack Over-

ow posts [29] . Guillory et al. [30] went a step further and examined

he spread of negative emotions into online communities. Their analy-

es suggest that contagion of negative emotions can occur in groups of

eople and impact their performance. 

Guzman and Bruegge [31] presented a position paper that describes

motional awareness in software development teams. The paper was

otivated by the same concerns that have motivated our approach.

heir approach investigates the collective emotional awareness of de-

elopers in distributed teams. It extracts emotional state from a 1000

f collaboration artifacts aiming to summarize emotions expressed in

hose artifacts by extracting topics and assigning them an average emo-

ion score. Authors presented the emotion average fluctuation to the

roject leaders, whom confirmed the correlation of positive and nega-

ive emotion peaks with team performance, motivation and important

eadlines. Our work improves and expands their idea by using propen-

ity score to allow for more accurate comparisons, and apply them on

omments related to code reviews instead of comments from commits. 
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Table 1 

Existing sentiment analysis tools. 

Tool Purpose Technique Trained on Ref. 

Sentistrength General Rule-based Twitter [28] 

Sentistrength_SE Focused Rule-based Jira [13] 

Senti4SD Focused Lexical Features Stack Overflow [11] 

SentiCR Focused Lexical Features Code Reviews [12] 
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Table 2 

A statistical summary for each studied system. 

Projects #Reviews #Comments #Contributors 

Openstack 228,099 5,021,264 8,088 

Eclipse 15,887 153,176 1,082 

Android 63,610 355,765 3,334 

LibreOffice 28,030 174,181 634 
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2 http://kin-y.github.io/miningReviewRepo/ . 
3 http://openstack.org . 
4 https://eclipse.org/ . 
5 https://source.android.com/ . 
6 https://www.libreoffice.org/ . 
7 http://kin-y.github.io/miningReviewRepo/ . 
Sinha et al. [32] analyzed developers commits logs for a large set of

ithub projects and found that the majority of the sentiment expressed

y developers is neutral. They also found that negative comments are

ore present than positive ones (respectively 18.05% vs. 7.17%). Sim-

larly, Guzman et al. [33] examined the sentiments expressed by de-

elopers in comments related to commits from 29 open source projects

nd found an approximately equal distribution of positive, negative and

eutral sentiments. Paul et al. [34] explored the difference of expressed

entiments between men and women during various software engineer-

ng tasks including the code review practice. The authors report that

omen are less likely to express their sentiment than men and that sen-

iment words, emoticons, and expletives vary cross-gender. However,

heir study did not investigate the effect of expressed sentiment on the

rodctivity of the code review activity according to the duration and

esults. 

Khan et al. [35] conducted two studies to explore the impact of

entiments on developer’s performance. They found that programmers’

oods influence positively some programming tasks such as debugging.

imilarly, Ortu et al. [36] studied the impact of developers’ affectiveness

n productivity focusing on the correlation between emotional states

nd productivity in terms of issues fixing time. They report that the

appier developers are, i.e., expressing emotions such as joy and love

n their comments, the shorter the issue fixing time is likely to be. They

lso report that emotions such as sadness are linked to longer issue fix-

ng time. Also, Destefanis et al. [37] investigated social aspects among

evelopers working on software projects and explored whether the po-

iteness of comments affected the time required to fix any given issue.

heir results showed that the level of politeness in the communication

rocess among developers does have an effect on the time required to

x issues and, more specifically the more polite the developers were,

he less time it took to fix an issue. We complement existing work on

he impact of sentiment on productivity by studying the influence of

ext-based expressed sentiment on the duration and outcome of code

eviews. 

Recent studies have investigated factors affecting the effectiveness

f code review comments. Rahman et al. [38] extracted a number of

eatures from the text of the review comments attempting to predict the

sefulness of code review comments using textual features. However,

heir empirical study was limited to structural characteristics of the text

ithout considering emotions/sentiments expressed in them. Efstathiou

nd Spinellis [7] studied the language of code review comments and re-

ort that language does matters. In this paper, we continue this line of

ork by investigating the role of sentiments expressed in code review

omments on the outcome of code review. Since Lin et al. [8] recently

ighlighted issues with the accuracy of existing sentiment analysis tools

rom the literature, we have choose the most powerful sentiment analy-

is tool based on a benchmarking of several sentiment analysis tools. In

able 1 , we present a summary of existing sentiment analysis tools that

re designed and tested using data from software artifacts. 

. Empirical study design 

Our overall goal is to understand the influence of expressed senti-

ent, throughout comments, on time and outcomes of code reviews.

ig. 2 presents an overview of the steps of our study and how they relate

o our research questions. In the remainder of this section, we describe

ach step in details. 
40 
.1. Data collection 

We conduct our empirical study based on publicly available code

eview data, mined from Gerrit system and organized in a portable

atabase dump [39] . We selected this data set because it contains a

ubstantial volume of data from well-known open source projects orga-

ized in a relational database 2 as depicted in Fig. 3 . In our study we used

ata of four well-known open-source systems, OpenStack, 3 Eclipse, 4 An-

roid 5 and LibreOffice. 6 OpenStack is a software platform for cloud

omputing, controlling large pools of computing, storage, and network-

ng resources throughout a data center. Eclipse is an integrated devel-

pment environment (IDE) used in computer programming. Android is

 free software stack for a wide range of mobile devices led by Google.

ibreOffice is a fork from the OpenOffice.org project. We selected these

rojects because they have been actively developed for more than five

ears and hence provide a rich data set of reviews. Also, they are from

ifferent domains, are written in different programming languages, and

ave been quite studied in other research domains. 

The original dataset 7 is stored in a relational database (335,626 re-

iews and contains over 5 million comments) under the schema de-

icted in Fig. 3 . In general, a contributor ( i.e., personId, name, email)

equests a review characterized by a reviewId, the creation time (create-

At), the last time modified (updatedAt), related project and the source

ode branch. A review includes a set of patches when the author re-

eatedly update the change by committing new resubmissions with the

ame review request ID and a list of edited files. The history of launched

iscussion over proposed changes is recorded in the table ‘ Comment ’. 

We retrieved and exported required data into separate csv files to

ase our data pre-processing. Table 2 shows descriptive statistics regard-

ng the studied projects. 

.2. Data preprocessing 

In order to improve the quality of our dataset with respect to our

ain goal which is studying the human sentiments expressed in code

eview comments, we performed three pre-processing steps on the raw

ata: 

1. We discarded comments generated automatically such as those gen-

erated by build automation and continuous integration services.

Those comments contain key-words such as: ‘Jenkins’, ‘Hudson’,

‘Bot’, or ‘CI Servers’ (about 29% of the total comments were ex-

cluded). Using regular expressions, we excluded automatic expres-

sions ( e.g., Build succeed, Build failed, etc.). In addition, we removed

reviews with status = “New ” since their final status remains un-

known ( ∼5% of total reviews). We limited our analysis to closed

reviews (i.e., reviews marked as ”Merged ” or ”Abandoned ”) that

contain at least one comment. The remaining data set contains

4,426,451 comments belonging to 317,373 reviews. 

http://www.OpenOffice.org
http://kin-y.github.io/miningReviewRepo/
http://openstack.org
https://eclipse.org/
https://source.android.com/
https://www.libreoffice.org/
http://kin-y.github.io/miningReviewRepo/
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Fig. 2. Overview of our empirical study. 

Fig. 3. Simplified database schema of Gerrit data. 
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2. For each review, we gathered key information such as timestamp

of opening and closing of the review, count of edited files, count of

patches, and number of added and deleted lines. Clustering reviews

based on these metrics help us to make unbiased comparisons later

on. 

.3. Data analysis 

We use the propensity score matching (PSM) 8 [22] method to re-

roup reviews homogeneously according to some characteristics ( e.g.,

ize of the review, code churn, number of comments, etc.). Previous

orks report that code reviews are affected by a variety of technical
8 https://en.wikipedia.org/wiki/Propensity_score_matching . 

 

 

 

41 
actors such as the size of the source code [6] . Using PSM allows us to

e able to compare reviews that are logically comparable in terms of

hese known affecting factors. PSM is a statistical matching technique

idely used to compress covariates to a variable ( i.e., compare techni-

al factors and generate a propensity score). PSM is proposed to treat

he effects of confounding factors. [40] presents an evaluation of the

fficiency of PSM in mitigating confounding factors. 

In this work, we used the R package called Matchit to carry out the

rst two steps enumerated bellow, while step 3 required a manual ver-

fication. The three steps are described as follows: 

1. A logistic regression model is built based on a high-dimensional set

of characteristics. The revision sentiment (Positive or Negative) is

set as the dependent variable, and reviews technical characteristics:

(i) amount of comments for the review; (ii) count of patchSets, (iii)

https://en.wikipedia.org/wiki/Propensity_score_matching


I.E. Asri, N. Kerzazi and G. Uddin et al. Information and Software Technology 114 (2019) 37–54 

Table 3 

Mean differences of technical characteristics before and after Propensity Score Matching (Eclipse Project). 

Befor PSM After PSM 

Positive reviews Negative reviews p -value Positive reviews Negative reviews p -value 

Comments 9.96 12.60 9.07e − 06 6.20 6.20 0.09 

Patchesets 2.60 2.63 2e − 03 1.51 1.51 0.06 

Edited_files 13.25 14.22 0.33 1.66 1.66 0.37 

Churn 4993.70 8431.20 0.06 51.49 42.29 0.34 

Distinct contrib 2.94 3.27 1.60e − 7 2.66 2.66 2e − 4 
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10 We used the F1-measure to determine the best performing classifiers, fol- 
number of edited files, (iv) distinct involved Contributors, and (v)

churn are set as its independent variables. The output of the logistic

regression model is a fitted value (a probability value) called propen-

sity score. 

2. The propensity scores are used to match pairs of data points. Each

pair has different values of the dependent variable. Similar values of

the propensity score imply a similarity of reviews technical charac-

teristics. For our purpose we used the Genetic matching algorithm

to match appropriate pairs of reviews. Then matched pairs are com-

bined into a new dataset. 

3. The final step is to verify the balance of covariate characteristics.

To do that, we manually compared the means differences for each

covariate variable across matched reviews. 

The output of PSM is two groups : one for positive reviews and the

ther one for negative reviews. Although the final step of PSM is to

erify the balance of covariate characteristics, we carried out a manual

alidation of confounding bias on PSM outputs as shown in Table 3 .

or instance, the mean difference of total comments for positive and

egative reviews shift respectively from (9.96, 12.6) to (6.2, 6.2), which

eans more homogeneous groups. One can also notice greater p -values 9 

ith matched reviews; meaning an equivalent distribution regarding

echnical characteristics. 

The new balanced dataset, used later in answering RQ3.1, contains

2,393 positive vs 876 negative reviews) for Openstack, (811 positive

s 155 negative reviews) for Eclipse, (11,831 positive vs 2,373 negative

eviews) for Android, and (9,002 positive vs 498 negative reviews) for

ibreOffice. 

. Findings 

We now present the findings of the sentiment analysis conducted on

our OSS projects. For each of our four research questions, we present

ur motivation, the approach, and results. 

Q1. What is the performance of sentiment detectors when 

pplied on code reviews? 

• Motivation. To investigate whether the negative and positive sen-

iments expressed in developers’ text-based review interactions affect

he code review process, we need a tool capable of detecting sentiments

n code review comments accurately. So far three different sentiment

etection engines have been proposed in the software engineering liter-

ture [11–13] , but not trained specifically on comments of code reviews.

owever, these previous attempts to analyze text-based sentiments for

oftware engineering have been either incomplete nor reusable for other

omains [7,8] . A major reason of this inadequacy is that software engi-

eering encompasses vocabulary from diverse sub-domains [7] . There-

ore, a tool trained and successfully tested in one sub-domain (e.g., Q&R

tack Overflow) may not be useful enough for another sub-domain (i.e.,

omments within Jira issues system). Consequently, we were more cau-

ious on how to choose our tools. 
9 The p -values are calculated using Mann-Whitney U test [41] . 
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• Approach. We compared the performance of three sentiment detec-

ion tools: SentistrengthSE [13] , Senti4SD [11] , and SentiCR [12] aim-

ng to choose the most adequate tool for the domain of source code

eviews. These three tools have been trained previously to detect sen-

iments in software engineering using specific datasets (see Table 1 ).

n order to compare cautiously the performance of the three tools, we

arried out a manual annotation (by four raters) on a subset of com-

ents. To strengthen our sampling, we built an over-sampling approach

n which the minority class ( i.e., negative sentiments) is equally repre-

ented. Concretely, following the approach used by Novieli et al. [42] ,

e built four sub-datasets by performing opportunistic sampling. The

rst sample is created based on the output of SentiStrength_SE, it con-

ains 1,200 comments equally distributed (for each project we have 100

ositive, 100 Negtive and 100 Neutral, making 300 × 4 = 1200 ). The sec-

nd and the third samples retrieved respectively from Senti4SD and Sen-

iCR contain 360 comments each. The final sample contains 300 random

omments. Then each review comment was manually annotated (posi-

ive, negative, neutral) by the first author and one of the other authors to

nsure a stable annotation. The same approach was previously used by

in et al. [8] to produce their sentiment benchmark. The agreement be-

ween the two coders, measured using Cohen’s kappa, ranged from 81%

o 95% (83% for Senti4SD sample, 95% for SentiCR sample, 81% for

entiStrengthSE and 91% for Random sample).To resolve the disagree-

ents between raters, the annotations were discussed and the guideline

f annotation was updated by the first author. For instance, an example

f a disagreement between two annotators happened fir the following

entence: ”Patch Set 2: Fails Merges in public tree, but does not build. Please

x and reupload. Thanks! ”. The first annotator classified this comment as

ositive, while the second one classified it as Negative. Through mutual

onsent we decided to tag this typical comment as Positive since the

ommenter was very polite and used ”Please ” and ”Thanks ” in his text.

Our sub-datasets as well as the original dataset (5 millions com-

ents) are available in the companion on line appendix [43] for the

urpose of replication. 

• Results. Table 4 reports the performance obtained in terms of re-

all, precision, and F1-measure, for each polarity classes (Positive, Neg-

tive, and Neutral) as well as the overall performance, for the three

ools when applied to our data samples. We highlight the best values

or each metric. Surprisingly, when expecting a good performance from

entiCR tool, Senti4SD shows a slightly better overall performance than

he other tools (F1 = 0.79 10 ). Again, Lin et al. [8] pointed out that senti-

ent analysis tools should always be carefully evaluated in the specific

ontext of usage. We double check our results by performing McNemar 11 

tatistical test [45] in order to compare the classification results of the

hree tools. The performance differences between Senti4SD and other

lassifiers were found to be statistically significant (p_value ≺ 0.05 and

 scores = 11.49 ≻ 0) indicating that Senti4SD performs better than Sen-

iCR. Moreover, when comparing this result with our manual tagging,

e noticed that 472 comments were correctly classified by Senti4SD and
owing standard practices in Information Retrieval [44] . 
11 https://stat.ethz.ch/R-manual/R-devel/library/stats/html/mcnemar.test. 

tml . 

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/mcnemar.test.html
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Table 4 

Performance of Sentiment Detectors in Code Review samples (P = Precision, R = Recall, F1 = F1-Measure) 

Dataset Class Sentistrength_SE Senti4SD SentiCR 

P R F1 P R F1 P R F1 

SentistrengthSE_based Positive 0.86 0.85 0.83 0.81 0.84 0.82 0.59 0.89 0.71 

Negative 0.91 0.61 0.73 0.66 0.68 0.67 0.59 0.66 0.62 

Neutral 0.7 0.98 0.81 0.83 0.81 0.82 0.88 0.69 0.77 

Micro-avg. 0.8 0.8 0.8 0.79 0.79 0.79 0.72 0.72 0.72 

Macro-avg. 0.82 0.8 0.79 0.77 0.77 0.77 0.69 0.75 0.7 

Senti4SD_based Positive 0.83 0.92 0.87 0.91 0.91 0.91 0.3 0.81 0.43 

Negative 0.57 0.8 0.67 1 0.78 0.87 0.42 0.8 0.55 

Neutral 0.89 0.7 0.78 0.79 0.96 0.87 0.93 0.51 0.66 

Micro-avg. 0.78 0.78 0.78 0.88 0.88 0.88 0.59 0.59 0.59 

Macro-avg. 0.76 0.81 0.77 0.9 0.88 0.88 0.55 0.71 0.55 

SentiCR_based Positive 0.6 0.82 0.7 0.74 0.72 0.73 0.73 0.7 0.72 

Negative 0.52 0.4 0.45 0.67 0.46 0.55 0.91 0.25 0.4 

Neutral 0.82 0.76 0.79 0.76 0.83 0.79 0.53 0.93 0.67 

Micro-avg. 0.73 0.73 0.73 0.75 0.75 0.75 0.63 0.63 0.63 

Macro-avg. 0.65 0.66 0.64 0.72 0.67 0.69 0.72 0.63 0.6 

Random Positive 0.27 0.95 0.42 0.83 0.89 0.86 0.05 0.44 0.09 

Negative 0.11 0.15 0.13 0.58 0.76 0.66 0.05 0.14 0.08 

Neutral 0.95 0.75 0.84 0.97 0.93 0.95 0.96 0.71 0.81 

Micro-avg. 0.74 0.74 0.74 0.92 0.92 0.92 0.69 0.69 0.69 

Macro-avg. 0.44 0.62 0.46 0.8 0.86 0.82 0.35 0.43 0.33 

Overall Micro-avg. 0.76 0.76 0.76 0.83 0.83 0.83 0.65 0.65 0.65 

Overall Macro-avg. 0.66 0.72 0.66 0.79 0.79 0.79 0.57 0.63 0.54 
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isclassified by SentiCR while only 178 comments correctly classified

y SentiCR and misclassified by Senti4SD. 

Q2. How prevalent are sentiments in code reviews? 

• Motivation. Sentiments are ubiquitous in human activity: There is

n old saying “Feeling Good-Doing Good ” [46] . OSS contributors may un-

erperform if they do not feel safe and happy [35] . Negative emotions

ike anger can make people less motivated and thus less creative [36] ;

wo key factors to ensure productivity within modern software organiza-

ions [27] . For instance, Linus Torvalds sent out an email 12 to the Linux

evelopers’ community admitting his verbal abuse in communications

 ”My flippant attacks in emails have been both unprofessional and uncalled

or, ”] . Torvalds stepped down because people where complaining about

is lack of care sentiments in his communications which has hurt some

ontributors and may have driven some away from working in kernel

evelopment altogether [ ” I’m going to take time off and get some assis-

ance on how to understand people’s emotions and respond appropriately ”.] .

mpirical evidence of the effect of expressed sentiments contained into

omments on code reviews could help developers pay more attention

o the way they comment on other’s work, especially in a context of

irtual communities such as Github characterized by multicultural con-

ributors. 

Previous research [2,33,36] have observed significant presence of

entiments and emotions in code reviews and issue comments. There-

ore, before analyzing the relationship between sentiments expressed in

ode reviews and code review outcomes, it is important to learn whether

entiments are also prevalent in our dataset of code review comments.
12 https://gizmodo.com/linux-founder-takes-some-time-off-to-learn-how-to- 

top-1829105667 . 
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43 
iven that developers can express as well as seek opinions in diverse

evelopment scenarios [47,48] , their expression of opinions in code

eview comments may be influenced by diverse development needs

nd situations. Therefore, it is necessary to learn how developers ex-

ressed those sentiments and what could have triggered the developers

o express those sentiments. We thus start with the following research

uestion: 

• RQ2.1: How are positive and negative sentiments expressed in

code reviews? 

We are also interested in understanding how the expressed senti-

ents of contributors evolve over time as they gain in seniority within

 project. There has been research examining OSS contributors’ involve-

ent over time [26] , in particular, researchers pointed out that empir-

cal analyses that mix the two groups will likely yield invalid results.

urprisingly little research has examined the evolution of text-based sen-

iments when contributors gain reputation ( i.e., belong to the core team

eading the project). Reviewer’s sentiment may wax and wane as project

rogresses. We thus derive the following research question. 

• RQ2.2: How do the prevalence of expressed sentiments of re-

viewers evolve over time? 

We are interested in analyzing potential differences in expressed sen-

iments between core and peripheral contributors. Core members are

hose developers that contribute intensively and sustainably to the OSS

roject, and thus, lead the community, while peripheral ones are oc-

asional contributors with less frequent commits. Our main purpose is

o study the correlation between a gain of contributors reputation and

he nature of sentiments they express within reviews comments. We hy-

othesize that newcomers try to imitate contributors with a certain rep-

tation, which might affect the culture of commenting. Hence, we for-

ulate the following research questions: 

https://gizmodo.com/linux-founder-takes-some-time-off-to-learn-how-to-stop-1829105667
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Table 5 

Distributions of sentiments in reviews. 

Project Positive Neutral Negative Mean SD Kurtosis Skewness 

Openstack 16.27 % 81.04% 2.68% 0.13 0.41 1.63 0.89 

Eclipse 8.31% 89.92% 1.77% 0.06 0.31 6.25 1.53 

Android 14.06% 84.09% 1.86% 0.12 0.37 2.43 1.22 

LibreOffice 17.14 % 80.21% 2.65% 0.14 0.42 1.39 0.87 

Table 6 

Categorization of sentiments within code review comments. 

Sentiment Category Example Total ratio 

Positive 

Sentiment 

Satisfactory Opinion Thank you Andrey!I really appreciate that you 

took the time to check that, and I’m glad to hear 

that performance is now okay :) 

130 19.6% 

Friendly Interaction Works fine no issues 247 37.1% 

Explicit Signals Restored I’ll revive this, it makes the debug info 

analysis much more pleasant. 

82 12.3% 

Announcement I’m sure you see how having all your patches in 

one chain helps for sanity 

103 15.5% 

Socializing My pleasure :). 59 8.9% 

Curiosity Before the change, the tests were working fine on 

the command line. 

44 6;6% 

Negative 

Sentiment 

Unsatisfied Opinion Forgot to publish these. Sorry! 71 16.03% 

Aggression PS. I hate this change and this API. 68 15.35% 

Uncomfortable Situation I’m sorry but your approach looks like overkill to 

me. 

276 62.30% 

Sadness I really dislike this patch and ”I would prefer that 

you didn’t submit this ” but I don’t know if it’s a 

valid reason to -1 it. 

28 6.32% 

Neutral 

Sentiment 

– – 1111 
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• RQ2.3: Do core and peripheral contributors express different

types of sentiment according to their position in a collaborative

social network graph? 

Q2.1: How are positive and negative sentiments expressed in code reviews?

• Approach: Our dataset contains more than 4.4 million comments

n code reviews regarding four long-lived and well known OSS projects:

penstack, Eclipse, Android, and LibreOffice . The distribution of com-

ents is shown in Table 5 . Next, we conducted a sentiment analysis

n comments using natural language processing techniques. We used

enti4SD tool, a fully-automated algorithm, to compute the sentiment

core for each comment on each review. To determine whether senti-

ent scores are consistent in the projects, we calculate the skewness and

urtosis of the sentiment scores. The skewness of a distribution captures

he level of symmetry in terms of mean and median. For instance, a neg-

tive skew means that the overall reviews are towards negativity, while

 positive skew means that the reviewers overall express more positivity.

urtosis explains the shape of the distribution (univariate normal dis-

ribution is 3). A kurtosis lower than 3 means that the reviewers have

 strong consensus, while a kurtosis greater than 3 means a divergence.

n order to investigate further the type of sentiments expressed within

ode review comments, we manually tagged positive (666) and nega-

ive (443) comments from the dataset used to answer RQ1 . To do so, we

everaged on categorization provided by Tourani et al. [49] , which cat-

gorized positive sentiments into six categories and negative ones into

our categories as described in Table 6 . Each comment was manually

ategorized by two raters, the agreement between the two coders, mea-

ured using Cohen’s kappa, was 61% for positive comments and 65%

or negative comments. 

• Results: 8.31% of comments were reported as positive

score = 1) in the Eclipse project. While 89.92% of comments were

eutral (score = 0) and 1.77% were negative sentiments (score = − 1).

able 5 summarizes the results of sentiment computation for the stud-
44 
ed projects and provide some descriptive statistics, i.e., the mean, stan-

ard deviation, kurtosis, and skewness. We noticed relatively similar

istributions concerning the proportion of expressed sentiment within

omments across the four projects. Neutral comments are the most

resent ( 83.81% ) which confirms the results of previous studies [32] .

he large amount of neutral sentiments can be mainly explained by

he presence of technical vocabulary within comments. For instance, in

clipse project, over 153 thousand comments, 89.92% was reported as

eutral. 

We found that 13.94% of comments related to all projects were pos-

tive ( e.g., “Thanks for the most excellent review. :) ”), while around 2.24%

f comments were identified as negative ( e.g., “Horrible :( ”). 

Eclipse is the only project with a Kurtosis value greater than 3 which

uggests that sentiment are diverse among the contributors while Open-

tack, Android, and LibreOffice have a Kurtosis slightly less than 3,

eaning that reviewers have a strong consensus on sentiment expres-

ion in source code reviews. 

Overall, results reveal that the distribution is highly positively

kewed for Eclipse and Android while moderately skewed for Openstack

nd LibreOffice. 

Manual annotation revealed that ‘Friendly Interaction’ is the most

revalent category of positive sentiments with a proportion of 37.1% as

eported in Table 6 . This means that, to a large extent, 37.1% of positive

nteractions between the community ” members are guided with respect

nd positive attitudes. ‘Satisfactory Opinion’ and ‘Announcement’ count

espectively for 19.6% and 15.5%. While the most common category

f negative sentiment is ‘Uncomfortable Situation’ with a percentage of

2.30%. This means that 62.30% of negative comments express strong

ressures such as time constraints that could overwhelm them, confu-

ion about inexplicable behavior of the software system, or concerns

bout risks and fears. ‘Unsatisfied Opinion’, ‘Aggression’, and ‘Sadness’

ount respectively for 16.03%, 15.35% and 6.32%. 

As stated by Tourani et al. [49] , well-mannered interactions with a

ositive undertone might lead to a higher productivity. Our RQ3 will
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Fig. 4. Average sentiment evolution per month of the top 5% contributors. 
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nvestigate the impact of expressed sentiments into comments on the

uration and the outcome of a source code reviews. 

Q2.2: How do the prevalence of Expressed Sentiments of Reviewers Evolve

ver Time? 

• Approach: To answer this research question, we proceeded as fol-

ows. First, we examined the sentiment evolution of top 5% contribu-

ors for each project during the complete time period under study. We

ick the top 5% to ensure that we have the most active contributors

ithout any discontinuity in the review activity. In total, over the four

tudied projects, we analyzed the evolution of expressed sentiments of

he top 5% (484 out of 9680 contributors) who have created 1,493,224

omments (33.73% of total comments). After zooming on this group

f contributors, we explored manually in details the time series of the

op five contributors for one project, which produced 7,184 comments

0.16% of the total comments) to ground sentiment evolution patterns.

e focused only on 5 members because of the high cost of the analysis.
45 
• Results: We observed a trend toward neutral sentiments correlated

ith the progression of contributors toward the core team. The more a

ontributor gains reputation, the more he is likely to express neu-

ral sentiments . Fig. 4 shows the average of sentiment evolution per

onth of top 5% contributors ( i.e., reviewers). However, we cannot

onjecture that this trend towards neutral sentiments is due to a gain

f reputation by contributors. It could also be simply due to cultural

hanges in the studied projects. Further analysis are necessary to better

nderstand the evolution of developers’ sentiments in OSS projects. 

In order to get more insights on sentiment average evolution, we

onitor the top 5 core contributors for the Eclipse project. We choose

he Eclipse project because it is intensively studied in the literature. As

ne can see in Fig. 5 , the sentiment averages vary significantly over

ears, decreasing from positive towards neutral. The sentiments of the

op 5 reviewers in Eclipse decreased to neutral over time. As mentioned

arlier, an interesting future qualitative research would be surveying the

ehavior of the most productive contributors. 
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Fig. 5. Evolution of the sentiment average (per 

year) for the top 5 core contributors of the 

Eclipse project. 

Table 7 

Core-periphery distribution in studied projects. 

Projects Size of the core Size of the periphery Goodness (%) 

Openstack 1,081 4,921 82.6 

Eclipse 121 628 82.3 

Android 189 2,295 84.2 

LibreOffice 45 437 85.3 
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Fig. 6. Code review social network diagram of eclipse. 
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Q2.3: Do Core and Peripheral Contributors Express Different Types of 

entiment According to their Position in a Collaborative Social Network 

raph? 

• Approach. To answer RQ2 and the sub research questions we need

o build Social Networks for each project in order to detect Core and Pe-

ipheral contributors. To do so, we calculated the number of interactions

etween each pair of developers in each project. Then, we generated our

ocial network graphs as undirected, weighted graphs where nodes rep-

esent developers and edge weights represent the amount of co-edited

les by those contributors. Finally, to locate core and peripheral mem-

ers we followed the same approach described in [50] . We used the

means clustering method based on SNA centrality measures. Central-

ty measures used for this approach are : Degree centrality, Betweenness

entrality, Closeness centrality, Eigenvector centrality, Eccentricity and

ageRank. Each metric calculates centrality in a different way and has

 different interpretation of a central node [24] . 

Concretely, we used the Python package NetworkX to calculate the

ix centrality measures for each node in each graph. Then, we used the

 implementation of the Kmeans clustering algorithm to partition the

odes into core and peripheral groups based on the six centrality scores.

-means groups the project contributors into two mutually exclusive

lusters in which each contributor belongs to the cluster with the near-

st mean (measured using different centrality measures). K-means treats

ach contributor as an object having a location in space. It finds a par-

ition in which objects within each cluster are as close to each other as

ossible and as far from objects in other clusters as possible. We used the

means() 13 function within R with default configuration options to iden-

ify core and peripheral contributors. Table 7 provides a description of
13 https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html . 

S  

46 
he core-periphery partitions obtained for the four projects in this study,

longside with the goodness which is the between_SS / total_SS values

rovided as a result when using kmeans() of the classification. 

Fig. 6 shows the social network structure of the Openstack project

s generated by Cytoscape, 14 a tool for networks’ visualization. Core

evelopers (shown in yellow) represents a small set of contributors (be-

ween 4.55% and 12.14%, for the studied projects) who have generally

een involved with the OSS project for a relatively long time and are

aking significant contributions to guide the development and evolu-

ion of the project. Peripheral developers (shown in red) are a larger set

f contributors whom occasionally contribute to the project, mostly in-

eracting with core developers, and rarely interacting with each other.

o enhance readability of OpenStack graph, we removed the low-weight

egrees (weight ≺ 5) and isolated nodes. 

After segregating core and peripheral contributors, a sentiment score

verage for each contributor has been calculated based on the senti-

ent score of all the comments he made. Next, using Mann–Whitney

 test [41] , we compared the distributions of sentiment averages be-

ween groups of core and peripheral contributors. The test is applied

ollowing the commonly used confidence level of 95% ( i.e., 𝛼 ≺ 0.05).

ince we performed more than one comparison on the same dataset,
14 http://www.cytoscape.org/ . 

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html
http://www.cytoscape.org/
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Fig. 7. Comparing Sentiments Between Core and Peripheral Contributors. 
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Table 8 

Mann–Whitney U test results. 

Project U p -value Effect size 

Openstack 4,115,100 2.2e − 16 small (0.26) 

Eclipse 47,683 1.0e − 06 small (0.26) 

Android 536,920 2.2e − 16 small (0.27) 

LibreOffice 22,700 8.48e − 12 medium (0.47) 
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o mitigate the risks of obtaining false positive results, we use Bonfer-

oni correction [41] to control the familywise error rate. Concretely, we

alculated the adjusted p -value, which is multiplied by the number of

omparisons. Whenever we obtained statistically significant differences

etween groups, we computed the Cliff’s Delta effect size [41] to mea-

ure the magnitude of this difference. 

• Result. Fig. 7 shows the comparison of averages of sentiments be-

ween core and peripheral contributors. For the four studied projects,

he distribution of sentiment averages ranges between [ − 1, 1]. The

ann-Whitney test revealed a significant difference in the distribution

f sentiment average of core and peripheral contributors. However, the

ffect size is small, except for the LibreOffice project where it is medium,

s reported in Table 8 . 

Surprisingly, we observed that the peripheral contributors in all four

rojects have clearly more outliers - i.e., both positive and negative-

ompared to core ones whom sentiments remain concentrated around

eutral emotions ( i.e., value equal to zero). We hypothesize that the out-

iers segment are people participating by a single or a small amount of

omments, which impacts the values of averages, whereas Core devel-

pers remain neutral while they comment on the source code revisions.

Q3. How do the presence of sentiments in code reviews correlate

ith the outcome of the reviews? 

Motivation. Code review is an essential practice to ensure the long-

erm quality of the code base. This modern practice could be influenced
47 
y expressed sentiment within contributors’ comments. Intuitively, pos-

tive sentiments may improve the contributors mood, while negative

nes may prove detrimental to their morale. Such change in morale can

hen impact both the time taken and the outcome of the review pro-

ess. In particular, it is important to know how expressed sentiments

an impact code review practices along the following two dimensions:

1) Code Review Time, and (2) Code Review Outcome. The duration of

 source code review is an important factor for a software organization

roductivity [51] . We pose the following question: 

• RQ3.1 How do the sentiments expressed in the reviews correlate

with the duration and the outcome of a review compared to the

reviews with no sentiments? 

When a code review takes much longer than expected, the release of

he software and the team productivity can suffer. A number of factors

an contribute to such longer time, such as the absence or leave of the

ore developer responsible for the particular module related to the re-

iew or the change in priority. Another mitigating factor could be the

resence of controversy in the review comments. Intuitively, a feature

ay be controversial if its code review attracts positive and negative

omments almost equally. An empirical understanding of the extent to

hich such controversies can impact the code review outcome can offer

 gain of awareness regarding positive/negative impact of code review

ractices. As a practical implication, we can motivate a new feature

ithin Gerrit to proactively warn contributors involved in a review team

bout a risk of delaying the review due to controversies. We thus derive

he following research question. 

• RQ3.2. Does the presence of controversies in the code reviews

offers valuable insights into the outcome of those code reviews

compared to the reviews with non-controversial comments? 

We are investigating outlier reviews (that took a very long time) in

rder to determine whether the presence of controversial sentiments in

heir comments could be the root cause of increased review time. 

• RQ3.3. Do sentiments expressed by core contributors impact the

review outcome differently than those expressed by peripheral

contributors? 

In RQ2, we observed that core and peripheral contributors express

ifferent types of sentiments. Since the contribution of core and pe-

ipheral contributors in reviews activities are likely different, i.e., core

ontributors are expected to be involved more closely than peripheral

ontributors in code reviews. We are interested in examining whether

entiments expressed by these two groups of contributors also affect the
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Fig. 8. Box-plot of the duration of reviews ( ∗ : mean). 
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Fig. 9. Ratio of positive vs. negative reviews regarding reviews’ outcome. 
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15 p -value and effect size are measured using Mann–Whitney U test and the 

Cliff’s Delta effect size as explained in RQ2.2. 
eview process differently. In the following we answer three sub ques-

ions. 

Q3.1 How do the sentiments expressed in the reviews correlate with the 

uration and the outcome of a review compared to the reviews with no 

entiments? 

• Approach. An overview of review time distribution in studied

rojects, pointed out that the slowest review took hundreds of days

hereas the median review was less than one day. To avoid bias due to

kewed distributions, we used Tukey’s outliers detection methods [52] .

 review time is considered as outlier if it is above an Upper limit . Tukey’s

efine this limit based on the Lower and Upper quartiles [Q1, Q3] ( i.e.,

espectively the 25th and the 75th percentiles of data distribution) such

s: 

pper limit = 𝑄 3 + 1 . 5 ∗ 𝐼𝑄𝑅 (1)

Where inter-quartile range (IQR) is the interval between Q1 and Q3.

ukey’s method applied on review time distribution detected a distinct

pper limit days for each project (13.86 for Eclipse, 10.02 for Android,

1.04 for Openstack and 6.52 for LibreOffice). The new dataset contains

 total of 114,546 reviews. 

To assess the influence of positive or negative sentiments on the du-

ation of a code review, we used the Propensity Score Matching (PSM)

ethod [22] , as described in Section 4.3 . For practical applications, we

ompare only the reviews that are logically comparable in terms of tech-

ical characteristics: (1) amount of comments for the review; (2) count

f patchSets, (3) number of edited files,(4) Distinct involved Contrib-

tors, (5) and churn ( i.e., sum of inserted and deleted lines of code to

easure how large the change is). Also, to assess the influence of sen-

iments on the reviews’ outcome, we mapped the sentiment summary

f each review (Positive or Negative) with its final status (Merged or

bandoned). 

• Results. Comparing a homogeneous group of reviews (obtained

hrough PSM) reveals that positive reviews took less time to be closed

han negative ones, as depicted in Fig. 8 . Negative reviews required a

upplementary time of 1.32 day on average to be closed than posi-

ive ones. In other words, the average of durations for positive reviews

s less than the average for negative reviews. 

Also, as shown in Fig. 8 , positive reviews not only have the minimum

edian review time, but also, they have the lowest maximum number of

ays needed to be closed, compared to negative reviews. For instance, in

he Eclipse project, positive reviews last a maximum of 2.89 days, while
48 
eviews containing negative comments took approximately 5 days of

eview. Also, the Mann–Whitney test revealed a significant difference in

he distribution of reviews fixing times between positives and negatives

eviews with a small effect size 15 ) for all studied projects (see Table 9 ).

Fig. 9 shows mapping results of reviews types (Positive or Negative)

ith the final status of the review (Merged or Abandoned). For each

roject, the ratio values presents the distribution percentage of positive

nd negative reviews within merged review (first bar) and abandoned

nes (second bar). Results show that, not only does the sentiment ex-

ressed by developers affect the duration of code review, but it also

ffects the outcome. For instance, in Eclipse project, over 93% of suc-
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Table 9 

The p -value and the effect size of review times in pos- 

itive vs negative reviews. 

Project p -value Effect size 

Openstack 1.6e − 4 small (0.02) 

Eclipse 0.2e − 4 small (0.09) 

LibreOffice 2.8e − 11 small (0.17) 

Android 1.6e − 4 small (0.08) 
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Table 10 

Distribution of controversial and non controversial comments within outliers 

reviews (Yes = controversial, No = Not controversial). 

Project Controversial #Reviews Avg_review _time(days) p _value 

Android No 780 108.48 0.37 

Yes 31 120.38 

Eclipse No 185 126.95 0.7 

Yes 4 132.46 

LibreOffice No 442 44.18 0.01 

Yes 34 50.51 

Openstack No 10,201 61.82 0.17 

Yes 95 67.30 
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essfully merged reviews were tagged as positive, while 55% out of all

bandoned reviews have negative sentiments into their comments. 

Q3.2. Does the presence of controversies in the code reviews offers 

aluable insights into the outcome of those code reviews compared to the 

eviews with non-controversial comments? 

• Approach. In the previews questions, we analyzed only reviews

hat took less than the Upper limit before being accepted or abandoned.

n this research question, we examine reviews that took a very long time;

.e., more than identified threshold. Our goal is to investigate whether

he presence of controversy in reviews discussion is the root cause of the

ong delays. The Merriam–Webster Dictionary defines controversy as a

strong disagreement about something among a large group of people ”.

n our context, we classify a review as controversial if the discussions

bout the submitted source code contain controversial comments. We

ompute the degree of controversy using controversialMix [53] , which is

 score that estimates how many mixed positive and negative comments

re in a review discussion. 

ont rover sialMix = 

( 𝑀 𝑖𝑛 (( |𝑃 𝑜𝑠 |, |𝑁 𝑒𝑔|))) 
( 𝑀 𝑎𝑥 (( |𝑃 𝑜𝑠 |, |𝑁 𝑒𝑔|))) 

( |𝑃 𝑜𝑠 | + |𝑁𝑒𝑔|) 
( |𝑁𝑒𝑢 | + |𝑃 𝑜𝑠 |, + |𝑁𝑒𝑔|) 

(2) 

where Pos, Neg and Neu are the sets of comments with positive,

egative and neutral polarity. 

ControversialMix takes in consideration the amount of positive, neg-

tive and neutral comments in order to capture the diversity on ex-

ressed sentiments within the same review. Before computing contro-

ersialMix we did some data prepossessing by discarding : reviews with

nly one comment; reviews where all comments have the same tag (neg-

tive, positive, neutral) and reviews threads that have only positive or

egative comments. Finally, a review is tagged as controversial if con-

roversialMix ≥ 0.5. 
I  

49 
• Results. Table 10 shows the distribution of controversial reviews

nd the average review time needed to fix controversial and non con-

roversial reviews. 

Wilcoxon test applied on controversial and non-controversial re-

iews reveals that results about average review time (days) were sig-

ificant for only one project: LibreOffice with a p -value = 0.01. For this

articular project, one can see that controversial reviews required in

verage more days to be closed (+6.33 days). However, the limited

mount of controversy identified for Eclipse, Android, Openstack re-

pectively (4, 31, 95) compared to the amount of controversial reviews

ound in LibreOffice as shown in Table 10 , could explain the non sig-

ificant result obtained from the wilcoxon test on these projects. Con-

equently, we were not able to confirm this finding due to the lack of

ata. 

Q3.3 How do the sentiments expressed by the core vs the peripheral 

ontributors correlate with the outcomes of the code reviews? 

• Approach. We create two buckets for each project, one for

ach type of contributors ( i.e., core and peripheral). For each class

f contributors, we create three polarity buckets, labeled as positive,

egative, and neutral. For instance, the positive bucket contains all the

eview times (in days) of positive reviews. The negative bucket contains

ll the review times (in days) of negative reviews. The neutral bucket

ontains all the review times (in days) of neutral reviews. In each of

hese buckets we excluded: (1) reviews that took less than one day,

2) reviews that took more than the thresholds for each project that

e determined using Tukey’s outliers detection algorithm (see RQ3.1).

ntuitively, from a productivity perspective, it is useless to analyze the
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Table 11 

The impact of sentiments expressed by the core vs peripheral contributors on 

the code review elapsed time (in days). 

Project Reviewer type Review time for overall sentiment type 

Time metric Positive Negative Neutral 

Eclipse Core Average 4.8 5.1 4.8 

Std 3.3 3.2 3.3 

Median 4.0 4.9 3.9 

Peripheral Average 4.6 4.8 4.8 

Std 3.2 3.4 3.3 

Median 3.7 3.9 3.7 

Android Core Average 4.1 4.3 4.0 

Std 2.4 2.4 2.4 

Median 3.8 4.1 3.3 

Peripheral Average 4.1 4.9 4.0 

Std 2.5 2.3 2.4 

Median 3.2 3.5 3.5 

Libreoffice Core Average 3.1 3.3 3.1 

Std 1.6 1.7 1.6 

Median 2.9 3.0 2.8 

Peripheral Average 3.1 4.1 3.2 

Std 1.6 1.6 1.6 

Median 2.9 3.2 2.8 

Openstack Core Average 4.2 4.7 4.2 

Std 2.6 2.8 2.6 

Median 3.9 4.5 3.5 

Peripheral Average 4.3 4.9 4.2 

Std 2.7 2.3 2.6 

Median 3.5 3.5 3.7 
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Table 12 

The p -value and effect size of review times in the neutral vs non-neutral com- 

ments by the core and peripheral contributors. 

Project Review time Core Peripheral 

p -value 𝛿 p -value 𝛿

Eclipse Positive vs Neutral 0.40 0.009 0.17 N/A 

Negative vs Neutral 0.0002 0.27 0.48 0.151 

Android Positive vs Neutral 2.18E − 07 0.18 1.61E − 07 0.17 

Negative vs Neutral 2.28E − 04 0.31 0.002 0.27 

Libreoffice Positive vs Neutral 9.67E − 05 0.23 6.79E − 05 0.24 

Negative vs Neutral 3.11E − 01 0.38 8.52E − 08 0.46 

Openstack Positive vs Neutral 7.82E − 09 023 3.57E − 03 0.27 

Negative vs Neutral 9.20E − 04 0.42 6.39E − 07 0.31 
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mpact of sentiments for a review that took less than a day (because it

s already an impressive performance). 

We then divide each bucket into two further buckets: (1) Mixed.

e put a reviewin this bucket if it has sentiments expressed by both

ore and peripheral contributors. (2) Exclusive. We put a review in this

ucket, if it has sentiments expressed by either the core or the periph-

ral contributors, but not by both in the same review. We compare the

pinion impact of core versus peripheral contributors for the reviews in

he ‘Exclusive’ bucket for each project. 

• Results. In Table 11 , we show the summary statistics of the review

ime (in days) taken when the core or peripheral contributors offered

ositive or negative reviews. The ‘Neutral’ column under each contrib-

tor type shows the time taken when the contributor offered neutral

omments. For all projects, the average review time increased when the

eripheral contributors provided negative comments. For all project, the

verage review time is larger when the contributors provided negative

omments than when the core contributors provided neutral comments

n the reviews. This trend is similar between the core and peripheral con-

ributors, i.e., negative comments from any contributors tend to increase

he review time. Except for Eclipse, the increase in average time taken

ue to the negative comments is statistically significant (see Table 12 16 ).

owever, we do not see such impact for positive comments. For periph-

ral contributors, the impact is more prominent. For only one projects
16 p -value and effect size are measured using Mann–Whitney U test and the 

liff’s Delta effect size as explained in RQ3.1. 
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Eclipse), the review time is less when the peripheral contributors pro-

ided positive comments. 

Both the core and peripheral contributors seem to equally impact

he review time when they provide positive comments in two projects

Android and Libreoffice). 

For one project (Eclipse), the positive comments from core contrib-

tors seem to impact the review time more than the negative comments

rom peripheral contributors. For Openstack, the situation is reversed,

.e., the negative comments from the peripheral contributors seem to

mpact the average review time more than the core contributors. 

On average, the review time is much less in the reviews where the

eripheral contributors provided positive comments. This finding cor-

oborates our previous finding that peripheral contributors offer more

entiments in the code reviews, because the core contributors tend to be-

ome more neutral over time. Therefore, the happiness of the peripheral

ontributors seem to be important to reduce the code review time. 

. Future possibilities 

In all of our studied projects, the reviews with negative sentiments

ook more time to complete. This observation leads to the question of

ow we can leverage sentiment analysis to improve productivity in a

ode review process, if the contributors participating in the code reviews

an be both the provider and receiver of such negative sentiments. One

otential solution would be to design automated sentiment-based moni-

ors that can offer guidance to the contributors. Although such solutions

ack authoritativeness, they may nevertheless prove useful to guide the

ontributors through the different phases of a code review process by

itigating negativity in the review comments. With a view to improve

ode review outcome and time based on sentiment analysis, we offer

he following recommendations by taking cues from our three research

uestions: 

1. Sentiment analysis can be applied to find communities or sub-

communities within a project that may be affected by negative com-

ments. 

2. Harmful contributors, such as bullies can be detected to ensure that

they do not impact the review process negatively. 
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17 https://www.namsor.com/ . 
3. Controversial reviews can be identified to warn the project leaders

about potential controversial features or communities in a project. 

4. Software Bots can be designed to warn the contributors participating

in a review when negativity in a review increases. 

We now discuss the recommendations below. 

.1. Community-based analysis 

In RQ3, we built social networks of contributors and observed two

ajor streams of contributors, core and peripheral . Compared to the pe-

ipheral contributors, core members tend to remain with a project for

onger time. A deeper understanding of the interactions between the

ontributors based on social network analysis can offer insights into

hether intrinsic or dynamic sub-communities do exist in modern Gerrit-

ased code review systems. The identification of such communities can

ffer several benefits, such as promoting a high-performance community

o others, offering guidance to a community that is exchanging negative

entiments but is not productive enough, for examples. 

.2. Bullies among contributors 

In all the four studied projects, the reviews with negative sentiments

ook longer time to get accepted. One possible explanation is that a patch

ith bugs is likely to be viewed negatively and thus will not be accepted

r will be iterated until fixed. However, it is not easily explainable why

he negative comments from peripheral contributors impacted the re-

iew time more than the core contributors. One potential reason could

e that the peripheral contributors are mostly novices to the system com-

ared to the core contributors. Therefore, they would have expressed

rustrations due to their lack of understanding of the system. 

Another possible reason is that there could be bullies among the con-

ributors, who try to influence system design and code review outcome

sing negative comments. Such negative comments can also impact the

ontributors. Indeed, M ȧ ntyl ȧ et al. [54] observed that emotions ex-

ressed in Jira issues can be correlated to the burnouts of the develop-

rs. Ortu et al. [36] observed in Jira issues that despite being negative,

ullies are not necessarily more productive than other developers. An

nderstanding of the role of potential bullies in code reviews can offer

enefits, such as their impact on the code review outcome and produc-

ivity. Measures can be taken to detect the bullies among the contributors

nd to remove them from the review process. 

.3. Impact of controversies 

As we observed in RQ4 , regarding reviews taking a long time, the

resence of controversy can increase the review time even more. The

nalysis of controversy has proved useful in social media, such as to

etect fake news [55] . A deeper analysis of the controversial code re-

iew comments can offer insights into the specific reasons behind the

omments. For example, it may happen that the product feature (for

hich the patch is provided) may not be well designed, such that the

ontributors debate during the review process. It may also happen that

he feature is not well-received, such that the contributors have different

iewpoints on how to improve it. Therefore, measures can be taken to

itigate the controversies and thus improve the code review outcomes.

.4. Review sentiment bot 

Bots have been developed to assist in numerous software develop-

ent activities, such as automatically suggesting an answer from Stack

verflow given a query [56] , answering questions about an API from

ocumentation [57] , or warning developers in a GitHub project if they

ost negative comments [58] . We can develop similar bots to automati-

ally warn the contributors in a code review system with the automated

etection of negative comments, their prevalence in the controversies
51 
nd their proliferation by the bullies. As a first step, we can start with

he adaptation of Github sentiment bot [58] for code reviews. 

.5. Gender and cultural aspects 

We have investigated gender and cultural aspects bias concerns by

efining the following null hypothesis: 

H0: There is no significant difference in text-based sentiment be-

ween male and female contributors. 

H1: There is no significant difference in text-based sentiment be-

ween contributors from different countries, which have different lan-

uage and cultures. 

Difference between genders - Female and Male - may reveal in-

eresting facts under appropriate analysis. Indeed, recent studies dis-

ussed gender bias regarding productivity, in terms of commits, in OSS

rojects [59,60] . Moreover, Terrell et al. [61] reported that when new

emale contributors are identifiable, they have 12% lower chance of get-

ing their pull request accepted than other females whose gender was

ot identifiable from their profiles. Hence, we are interested in this work

o know if there is an association between developers’ genders and their

xpressed sentiments. More specifically, we formulate the following re-

earch questions: Are females’ contributors more likely to be posi-

ive/neutral/negative than males? Is the proportion of females that

xpress negative sentiments the same as the proportion of males?

o answer these questions, we segregated contributors according to their

ender. We used the NamSor 17 API to classify contributors into binary

ender given personal names, country of origin, and ethnicity. This API

nfers gender from the combination of first name, surname, and infor-

ation of the country. We found that 6.8% of Eclipse contributors were

emales and 88.9% were male, and 4.4% unknown. LibreOffice respec-

ively (9.4% ; 86.5% ; 4.1%) ; and OpenStack(10.9% ; 79.6% ; 9.5%). Un-

ortunately, we were not able to resolve genders for the Android project

ecause of (encrypted name and email). Fig. 10 shows the distribution

f sentiments across gender for three projects. 

One first observation is that women and men seem to exhibit the

ame distribution of sentiments. We performed further statistical anal-

sis to verify how genders differed in their expressed sentiments. Given

hat the variables do not exhibit a normal distribution, we performed a

non-parametric) Mann-Whitney-Wilcoxon test, with a confidence level

f 𝛼 = 0.05. We found that, overall for the three projects, the tests are

tatistically significant ( p ≺ 0.05, Z statistic of − 1.018) and thus we reject

ur null hypothesis H0. We claim that there is a significant difference in

he distribution of text-based sentiment between male and female con-

ributing to OSS projects. This result confirms previous findings by Paul

t al. [34] . 

We also investigated the impact of the country origin for the top

% core contributors within the three projects aiming to investigate the

mpact of the first language and cultural aspects of these contributors

n code reviews. Fig. 11 shows the geographical distribution of the top

% contributors. We performed a Kruskal–Wallis statistical test to verify

hether samples (i.e., different countries) have the same distribution of

xpressed sentiments. Kruskal–Wallis test results reveal that distribution

ifferences are statistically significant ( p _value ≺ 2.2e − 16), we reject

ur null hypothesis H1 and state that there is a statisticaly significant

ifference in expressed sentiments according to the country of origin. 

However, studying the effect of gender cultural aspects on code re-

iews are beyond the scope of this study. We will address this concern

n future work. 

. Threats to validity 

Threats to construct validity are mainly related to the accuracy of the

ool used for sentiment analysis. We strengthen our sampling approach

https://www.namsor.com/
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Fig. 10. Distribution of sentiments according to gender. 

Fig. 11. Countries distribution for top 5% con- 

tributors. 

f  

m  

s  

u  

v  

e

 

m  

s  

d  

c  

l  

n  

W  

f  

a

 

b  

t  

a  

o  

o  

d  

t  

e  

t

 

I  

a  

s  

e  

i  

i  

t  

t  

f  

b  

o  

i  

a  

d  

l  

r  

a  

s

 

d  

c  

v  

a  

o  

p  

w  

i  

w  

t  

m  

o  

s  

t  

W  

i  

S  

m  

i  

t  
or manual annotation by using opportunistic sampling. The authors

anually examined 2220 comments. In general, we observed that the

entiments expressed in code reviews are easy to analyze due to the

nambiguous nature of text-based sentiments expressed in the code re-

iews comments, which were understood by both coders with relative

ase. 

Threats to internal validity concern factors internal to our study that

ay affect our findings. The primary threat to internal validity in this

tudy relates to project selection. One possible threat is that the retrieved

ataset is too small and somehow is not representative enough. We were

autious to choose OSS projects with the following characteristics: (1)

ong-lived projects with dynamic communities around; (2) the commu-

ity uses the review tools Gerrit to carry out code reviews activities.

e also paid attention not to violate assumptions of the statistical tests,

or example we applied non-parametric tests that do not require making

ssumptions on the normality of our data set. 

In addition, we used propensity score matching [62] to eliminate the

ias that could be introduced by technical characteristics. We compared

he distribution of estimated propensity score between Positive and Neg-

tive reviews in the matched sample and obtained an average of 96% of

verlap, which means that we are dealing with a homogeneous data set

f reviews based on the observed covariate values. This provides confi-

ence that the observed results are not due to structural differences in

he patches ( i.e., we are not comparing large patches with small patches,

tc.). However other technical characteristics can be considered such as

he number of sentences in the comments and code complexity. 

Threats to external validity concern the generalization of our findings.

n the context of RQ1 we performed 2,220 manual classifications. We

re aware that the quality and size of the annotated set may impact the

entiment classification accuracy. While the human raters are knowl-

dgeable in mining software repositories, sentiment analysis and empir-

cal analysis, their judgement may be impacted by the absence of related

n-depth information of the studied systems in the dataset, e.g., whether
52 
he reviewers in those studied systems exhibited any latent communi-

ies as reported by Bird et al. [63] . Furthermore, our study involves only

our projects. Thus, we should recognize that our conclusions may not

e generalizable to other systems. We are also aware that the context

f each project including the technical complexity and organization are

mportant factors that can limit generalization. However, these projects

re among the most studied projects in the literature and the system’s

ata are publicly available. We also have the opportunity to perform a

ongitudinal study over more than five years, which mitigates the risks

elated to cultural aspects. Yet, replication of our work on other open

nd close source systems is desirable in order to generalize our conclu-

ions. 

Threats to reliability validity refers to the degree to which the same

ata would lead to the same results when the study’s design is repli-

ated. Our research aims at investigating expressed sentiment by de-

elopers on reviews. Our methodology for data analysis and results

re well documented in this paper. The tools are available [39] and

ur datasets are publicly available online [43] . Also, all the partici-

ants of the manual tagging have a background in computer science;

e are confident that reviews comments have been interpreted accord-

ng to the perspective of software engineers. We did not involve raters

ith a different background, because they may overlook or misinterpret

he terms used by developers. However, RQ2.1 reveals that most com-

ents in the dataset have neutral sentiments, while only less than 3%

f the comments are negative which may have an impact on our analy-

is and results. In RQ3.2, we assessed whether reviews with sentiments

ook a shorter/longer time than the reviews with neutral sentiments.

e noticed a low number of negative sentiments, similarly observed

n previous studies that used datasets from Stack Overflow (e.g., the

tack Overflow dataset by Lin et al. [8] has around 75% neutral com-

ents). Therefore, although the low number of negative comments may

ntroduce a threat to the generalizability of our results across other sys-

ems, our analysis remains applicable to other systems. In addition, we
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ssessed the impact of sentiments on code review outcomes in RQ3.3

y comparing the time taken for reviews with positive comments vs the

eviews with negative comments. We found on average 13.94% positive

nd 2.24% negative comments in the four studied systems. 

Limitations of the study are those characteristics of design or methodology

hat may affect our findings. First, manual annotation is time-consuming and

rror-prone. Second, a lot of effort has been spent on finding the adequate tool

or sentiment analysis with enough accuracy and reliability on code review

omments. 

. Conclusions 

We have analyzed developers’ comments on reviews using historical

ata from four open source projects. We aimed at investigating the in-

uence of text-based expressed sentiments on the code review duration

nd its outcome. Using the best performing sentiment detection tool, we

ound that contributors do express sentiments when they are reviewing

nd commenting each other’s code. Also, we investigated the influence

f expressed sentiments within developers’ comments on the time and

utcome of the code review process. We found that expressing positive

entiment when reviewing source code have an influence on reviews du-

ation time; in average it could save 1.32 days on the review completion

ime. Moreover, our findings indicate that negative comments are likely

o increase the proportion of unsuccessful reviews. 

From a social network perspective, we used a K -means clustering

pproach based on SNA centrality measures to discern between core and

eripheral contributors. We found that different contributors within the

eer review collaboration social network express different sentiments,

ith core contributors expressing mostly neutral sentiments. 

Our work contributes theoretically and empirically to the body of

SS research and has practical implications on sentiment awareness

ithin OSS. We hope that our work will inspire more studies on de-

eloping efficient tools to help OSS contributors improve their produc-

ivity. As future work, we plan to complement this quantitative study

ith a qualitative exploration aiming at gaining more understanding of

he influence of expressed sentiments on code revision workflow. Also,

e plan to investigate the effect of developers’ expressed sentiment on

ontributor’s engagement and–or turnover. 
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